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Abstract
Following standard operator techniques, we obtain the transition amplitudes for
a general time-dependent linear harmonic oscillator without using the Green
function, the calculation of which is quite difficult. Our method provides a
straightforward and manifest method for calculating these transition amplitudes.

PACS numbers: 03.65.-w, 02.30.Tb

1. Introduction

Time-dependent harmonic oscillators have been considered by many authors [1–4]. From the
physical point of view, Parker [5] applied the alpha and beta coefficients of the problem to the
cosmological creation of particles in an expanding universe. Earlier, Kanai [2] had considered
a special simple form of the time-dependent linear oscillator. However, his model was very
strongly criticized by Brittin [6] and Senitzky [7], for various reasons.

Landovitz et al, rejecting the criticism, proceeded to calculate the Green function [8] for
the general form of Kanai’s [2] model and used it to calculate the corresponding transition
amplitudes [9]. Their calculation of the Green function is quite tedious, making it difficult to
comprehend.

In this paper, we present a new technique that avoids the Green function by using standard
operators to calculate the transition amplitudes for the general simple model in a transparent
manner, anticipating that this approach will be relevant to other physical problems, including
Senitzky’s [7] complex model of the dissipative quantum mechanical oscillator.

This paper is organized as follows. In section 2, we explain the problem and obtain
the transformed operators x+(t), p+(t), in terms of the non-transformed time-independent
operators x, p, and the coefficients in the ‘transition matrix’. In section 3, we calculate the
corresponding transformed creation and annihilation operators. In section 4, we derive the
recursion relations satisfied by these transition amplitudes. These recursion relations are used
in section 5 to calculate the transition amplitudes in terms of the initial one, which is then
evaluated to complete the calculation.
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2. The transformed operators x+(t), p+(t)

The Hamiltonian for the time-dependent linear harmonic oscillator is given by

H (t) = f (t) p
2

2m
+

1

2
g (t)mω2x2 (1)

where f (0) = g(0) = 1 gives the Hamiltonian for the time-independent situation and f (t) and
g(t) are real, continuous functions to make the Hamiltonian Hermitian. For easy comparison,
we have generally used the notation from [8]. Where we have used a different notation, we
shall state it explicitly.

The wave functions at arbitrary time t are related to those at t = 0 through a time-dependent
transformation u(t) as

ψ (x, t) = u (t) ψ (x, 0) (2)

where

u(t)u†(t) = u†(t)u(t) = 1. (3)

The Schrödinger equation

ih̄
∂

∂t
ψ (x, t) = H (t) ψ (x, t) (4)

and equation (2) give

ih̄
∂

∂t
u (x, t) = H (t) u (x, t) (5)

which, for the time-independent Hamiltonian, results in the obviously unitary ‘formal’ solution:

u (t) = e
−i
h̄
H t . (6)

In general, however, equation (5) cannot be solved analytically.
We define the operator O±(t) corresponding to any operator O(t) (which may have a

manifest time dependence) by

O+(t) = u†(t)O(t)u(t),O−(t) = u(t)O(t)u†(t). (7)

These operators satisfy the dynamic equations:

∂

∂t
O+ (t) = 1

ih̄
[O+ (t) , H+ (t)] +

(
∂

∂t
O

)
+

(8a)

∂

∂t
O− (t) = 1

ih̄

[
H (t) ,O− (t)

]
+

(
∂

∂t
O

)
−

(8b)

which have a slight asymmetry. Note that the operator in (8b) in the commutator is H (t), not
H− (t) as may be expected if there were symmetry.

The operators x+(t), p+(t) are related to x, p through a linear transformation in terms of

the ‘transition matrix’

(
a (t) b (t)

c (t) d (t)

)
as

x+(t) = u†(t)xu(t) = a(t)x + b(t)p (9a)

p+(t) = u†(t)pu(t) = c(t)x + d(t)p. (9b)

The Hamiltonian equation (8a) implies

ȧ (t) = f (t)

m
c (t) ḃ (t) = f (t)

m
d (t)

ċ (t) = mω2g (t) a (t) ḋ (t) = mω2g (t) b(t).

(10)
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Since, obviously

[x+, p+] = [x, p] = ih̄ (11)

we have

a(t)d(t)− b(t)c(t) = 1. (12)

Solving equations (10), we obtain a, b, c, d as functions of t with

a(0) = d(0) = 1 b(0) = c(0) = 0. (13)

These are then substituted in equation (9) to give the operators x+(t), p+(t).
Note that equations (10) imply

d

dt
(a (t) d (t)− b (t) c (t)) = 0

which again gives equation (12), using the conditions in equation (13). The transition matrix,
thus, is unimodular for all t .

3. Calculation of the transformed creation and annihilation operators

The non-Hermitian creation and annihilation operators A†, A are related to the Hermitian
operators x and p through

A† = −i√
2mh̄ω

(p + imωx) (14a)

A = i√
2mh̄ω

(p − imωx). (14b)

The above equation can be inverted to give

x =
√

h̄

2mω
(A + A†) (15a)

p = −i

√
mh̄ω

2
(A + A†). (15b)

The operators A,A† satisfy the commutation relation

[A,A†] = 1. (16)

In terms of the energy eigenstates of the Hamiltonian H = H(0) given by

H |n〉 = (n + 1
2 )h̄ω|n〉 (17)

these operators have the matrix elements

〈m|A|n〉 = √
nδmn−1 〈m|A†|n〉 =

√
n + 1δmn+1. (18)

Next, we compute the transformed creation and annihilation operators A†
+ (t), A+ (t) in terms

of the elements a(t), b(t), c(t), d(t) of the transition matrix. Indeed

A+(t) = u†(t)Au(t)

= i√
2mh̄ω

(p+ − imωx+)

= i√
2mh̄ω

[(c(t)x + d(t)p)− imω(a(t)x + b(t)p)]

= i√
2mh̄ω

[
(c(t)− imωa(t))

√
h̄

2mω
(A + A†)
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+(d(t)− imωb(t))(−i)

√
mh̄ω

2
(A− A†)

]
= α(t)A + β(t)A† (19)

where

α (t) = i

2mω

[
c (t)−m2ω2b (t)− imω (a (t) + d (t))

]
(20a)

β (t) = i

2mω

[
c (t) +m2ω2b (t)− imω (a (t)− d (t))]. (20b)

Similarly,

A†
+(t) = u†(t)A†u(t) = β∗(t)A + α∗(t)A† (21)

which can also be derived from equation (19) by taking Hermitian adjoints of the two sides.
In terms of the notations used in [8], α and β are related to λ, µ and σ in that work by

α(t) = − i

2σ(t)
λ∗(t) β(t) = i

2σ(t)
µ∗(t) (22)

where

σ (t) = 1

mωb (t)
(23a)

λ (t) = 1 − iσ (t) (a (t) + d (t)) + σ 2 (t) (1 − a (t) d (t)) (23b)

µ (t) = 1 + iσ (t) (a (t)− d (t))− σ 2 (t) (1 − a (t) d (t)) . (23c)

Note that, using equations (13) in (20),

α(0) = 1 β(0) = 0 (24)

as expected from equations (19) and (21). The quantities σ(t), λ(t) andµ(t) have complicated
t = 0 behaviour. This is the reason why we have used a different notation.

We may also check that[
A+(t), A

†
+(t)

] = [
α(t)A + β(t)A†, β∗(t)A + α∗(t)A†

]
= |α(t)|2 − |β(t)|2
= 1 (25)

using equations (20). This result could have been guessed from another equation:[
A+ (t) , A

†
+ (t)

] = u†
[
A, A†

]
u = u†u = 1. (26)

Just for completeness, we may also examine the operators

A− (t) = u (t) Au† (t) A
†
− (t) = u (t) Au† (t) (27)

x− (t) = d (t) x − b (t) p p− (t) = −c (t) x + a (t) p. (28)

Equations (28) have been written using the inverse of the transition matrix in equation (9)
which we note is unimodular as expressed in equation (12). Thus, to obtain A−(t), A

†
−(t)

from A+(t), A
†
+(t), we have to make the replacements

a(t)↔ d(t) b(t)↔ −b(t) c(t)↔ −c(t) (29)

which result in

α(t)→ i

2mω
[−c(t) +m2ω2b(t)− imω(a(t) + d(t))] = α∗(t) (30a)

β(t)→ i

2mω
[−c(t)−m2ω2b(t) + imω(a(t)− d(t))] = −β(t). (30b)

Thus

u(t)A(t)u†(t) = A−(t) = α∗(t)A(t)− β(t)A†(t) (31a)

u(t)A†(t)u†(t) = A†
−(t) = −β∗(t)A(t) + α(t)A†(t). (31b)
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4. Recursion relations for the transition amplitudes 〈m|u(t)|n〉

In this section, we derive the recursion relations satisfied by the transition amplitudes
amn(t) = 〈m|u(t)|n〉 where the bras 〈m| are eigenstates of H(t) while the kets |n〉 are
eigenstates of H(0). Indeed,

〈m|u(t)|n〉 = 1√
n
〈m|u(t)A†(t)|n− 1〉

= 1√
n
〈m|u(t)A†(t)u†(t)u(t)|n− 1〉

= 1√
n
〈m|A†

−(t)u(t)|n− 1〉

= 1√
n
〈m|(−β∗(t)A + α(t)A†)u(t)|n− 1〉

using equation (31b)

= 1√
n

[〈m| − β∗(t)u(t)u†(t)Au(t)|n− 1〉 + 〈m|α(t)A†(t)u(t)|n− 1〉]

= 1√
n

[〈m| − β∗(t)u(t)(α(t)A + β(t)A†)|n− 1〉 + α(t)
√
m〈m− 1|u(t)|n− 1〉]

= 1√
n

[
− α(t)β∗(t)

√
n− 1〈m|u(t)|n− 2〉 − |β(t)|2√n〈m|u(t)n〉

+α(t)
√
m〈m− 1|u(t)|n− 1〉

]
which becomes

(1 + |β(t)|2)〈m|u(t)|n〉 = −
√
n− 1

n
α(t)β∗(t)〈m|u(t)|n− 2〉 +

√
m

n
α(t)〈m− 1|u(t)|n− 1〉.

But, from equation (25), 1 + |β(t)|2 = |α(t)|2. Thus, we have

〈m|u(t)|n〉 = −β
∗(t)
α∗(t)

√
n− 1

n
〈m|u(t)|n− 2〉 +

1

α∗(t)

√
m

n
〈m− 1|u(t)|n− 1〉. (32a)

A similar procedure results in another recursion relation

〈m|u(t)|n〉 = β(t)

α∗(t)

√
m− 1

m
〈m− 2|u(t)|n〉 +

1

α∗(t)

√
n

m
〈m− 1|u(t)|n− 1〉. (32b)

5. Calculation of the transition amplitudes

We define the coefficients Bmn(t) by means of the equation

amn(t) = 〈m|u(t)|n〉 =
√
m!n!

(
β(t)

α∗(t)

)m/2 (
β∗(t)
α∗(t)

)n/2
Bmn(t). (33)

In terms of Bmn(t), the recursion relations in equation (32) become

nBmn(t) = −Bmn−2(t) +
1

|β|Bm−1n−1(t) (34)

and

mBmn(t) = Bm−2n(t) +
1

|β|Bm−1n−1(t). (35)
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The above recursion relations are sufficient to determine all Bmn(t) and hence the transition
amplitudes, up to a constant. For this purpose, we define a generating function

G(x, y, t) =
∞∑

m,n=0

Bmn(t)x
myn. (36)

To derive the partial differential equations satisfied by G(x, y, t), we multiply equations (34)
and (35) with xmyn and add from 0 to ∞ for both m and n. We shall also assume that any
Bmn(t) with any of the indices m or n negative gives Bmn(t) = 0. We also note that

x
∂

∂x
G(x, y, t) =

∞∑
m,n=0

mBmn(t)x
myn

y
∂

∂x
G(x, y, t) =

∞∑
m,n=0

mBmn(t)x
myn

xyG(x, y, t) =
∞∑

m,n=0

Bmn(t)x
m+1yn+1 =

∞∑
m,n=0

Bm−1n−1(t)x
myn

x2G(x, y, t) =
∞∑

m,n=0

Bmn(t)x
m+2yn =

∞∑
m,n=0

Bm−2n(t)x
myn

y2G(x, y, t) =
∞∑

m,n=0

Bmn(t)x
myn+2 =

∞∑
m,n=0

Bmn−2(t)x
myn.

Then, from equations (34) and (35), we derive the partial differential equations

∂

∂y
G(x, y, t) =

(
−y +

1

|β(x)|x
)
G(x, y, t) (37a)

∂

∂x
G(x, y, t) =

(
x +

1

|β(x)|y
)
G(x, y, t) (37b)

which can be trivially solved to obtain

G(x, y, t) = G(0, 0, t)e(x2−y2)/2+(1/|β|)xy . (38)

The t-dependent function G(0, 0, t) is related to a00(t) = 〈0|u(t)|0〉. Indeed,

G(0, 0, t) = B00(t) = a00(t) = 〈0|u(t)|0〉
and thus

G(x, y, t) = a00(t)e
(x2−y2)/2+(1/|β|)xy (39)

= a00(t)

∞∑
i,j,k=0

( 1
2 )
i+j x2i+ky2j+k(−1)j

|β(t)|ki!j !k!
. (40)

We now compare the coefficients of xmyn in equations (36) and (40) by taking m = 2i + k,
n = 2j + k, which fix i and j as m−k

2 ,
n−k

2 . Thus

Bmn(t) = a00(t)
∑
k

( 1
2 )

[(m+n)/2]−k(−1)(n−k)/2

|β(t)|kk!(m−k
2 )!(

n−k
2 )!

. (41)

Substituting for Bmn(t) from equation (41) in (33), we arrive at

amn(t) = 〈m|u(t)|n〉 = a00(t)

√
m!n!

(2α∗)(m+n)/2

∑
k

(−1)(n−k)/2
(β(t))(m−k)/2(β∗(t))(n−k)/2

k!(m−k
2 )!(

n−k
2 )!

(42)
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which gives the transition amplitudes amn(t) in terms of an m-, n-independent, t-dependent
function a00(t). Note that the k summation starts from 0 or 1, depending upon whetherm and
n are both even or both odd, and goes up to min(m, n) in steps of 2. Also it is obvious from
the above that amn(t) = 0 if |m− n| = odd integer.

To evaluate a00(t) = 〈0|u(t)|0〉, we put m = 0 in equation (32a) to find

〈0|u(t)|2n〉 = −
√

2n− 1

2n

β∗(t)
α∗(t)

〈0|u(t)|2n− 2〉 (43)

from which we obtain

〈0|u(t)|2n〉 = (−1)n

√
(2n− 1)(2n− 3) . . . 1

2n(2n− 2) . . . 2

(
β∗(t)
α∗(t)

)2

〈0|u(t)|0〉

= (−1)n
√
(2n)!

2nn!

(
β∗(t)
α∗(t)

)n
〈0|u(t)|0〉. (44)

But

〈0|0〉 = 1 =
∞∑
n=0

〈0|u(t)|2n〉〈2n|u†(t)|0〉 =
∞∑
n=0

|〈0|u(t)|2n〉|2

=
∞∑
n=0

(2n)!

22nn!n!

∣∣∣∣
(
β∗(t)
α∗(t)

)∣∣∣∣
2n

|〈0|u(t)|0〉|2. (45)

The summation over ‘n’ can be performed by using the duplication for the gamma function
in the form

(2n)! = %(2n + 1) = n!%(n + 1
2 )2

2n

√
π

∴ 1 =
∞∑
n=0

%(n + 1
2 )√

πn!

∣∣∣∣β∗(t)
α∗(t)

∣∣∣∣
2n

|〈0|u(t)|0〉|2

= |〈0|u(t)|0〉|2
(

1 −
∣∣∣∣β∗(t)
α∗(t)

∣∣∣∣
2
)−1/2

= |〈0|u(t)|0〉|2|α(t)|

∴ |〈0|u(t)|0〉| = 1√|α(t)| . (46)

We choose the phase of 〈0|u(t)|0〉 such that

〈0|u(t)|0〉 = 1√|α(t)| (47)

which agrees with 〈0|0〉 = 1 when t = 0, in which case u(0) = 1 and α(0) = 1, as given in
equation (24).

Finally, then,

amn(t) = 〈m|u(t)|n〉

=




√
m!n!

|α(t)|
1

(2α∗(t))(m+n)/2

∑
k

(−1)(n−k)/22k(β(t))(m−k)/2(β∗(t))(n−k)/2

k!(m−k
2 )!(

n−k
2 )!

when |m− n| = even

0 when |m− n| = odd.

(48)

As in equation (42), the summation over k in equation (48) starts from 0 or 1, depending on
whether m and n are both even or both odd, and goes to min(m, n) in steps of 2.
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When t → 0, α(t)→ 1, β(t)→ 0. Thus, the only k value that survives in the summation
is where m−k

2 = 0 = n−k
2 . In other words, we require m = n = k and we find that

amn(0) = 〈m|u(0)|n〉 = 〈m|n〉 = δmn
as expected from the orthonormality of the eigenstates of the time-independent Hamiltonian
H = H(0).

We note that, in our notation, this limit is obtainable trivially. With the notation in [8],
some analysis is needed to arrive at this limit.
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